2Using the Crystal Wrapper Class

2Installation

2Adding the Crystal wrapper calls to an Applications

2MAIN

2Project Settings

2Window

3Calling the Report

3Crystal Commands

3Initialising Crystal Reports

4Initialising a Print Job

4Finding which Version of Crystal is installed

4Setting a selection formula for a Report

5Setting a SQL Query for a Report

5Setting User formulas in a Report

5Passing a String Parameter to a Report

5Calling the Report

6Printing a Report

6Setting the Printer to send a Report to

6Exporting a Report

6Sending a Report through email

6Closing the Print Job

7Closing the Report Engine

7Closing a Report Job and the Print Engine

Using the Crystal Wrapper Class

Installation

All required components are held in the cr8.zip file. Open this using WinZip and copy the files as detailed below. If you are using Clarion5 when replace the C55 directory with your Clarion5 directory.

C55\LIB

Crpre32.lib

Crwrap32.lib

C55\LIBSRC

Cwcryst.clw

Cwcryst.inc

C55\TEMPLATE

Crystrpl.tpl

Adding the Crystal wrapper calls to an Applications

This document covers the direct use of the Crystal Wrapper calls. Use of the template will be similar to the Clarion Crystal template wrapper. Using the class wrapper directly allows you greater flexibility in the use of Crystal.

MAIN

In MAIN, Global, Embeds, Before Global Includes, add the following

INCLUDE('CWCRYST.INC'),ONCE

For the compiled demo lib version

INCLUDE('CWCRYSTL.INC'),ONCE

Can be used.

Project Settings

Add the following two entries to the Library, Object and Resource files settings:

Crpre32.lib
NOTE THIS IS NOT CRPE32.LIB

Crwrap32.lib

Window

On a Window where you want to call a report from, define the following variables (you can cut and paste these in if required). Alternatively define these in Global data and they can be used throughout all windows.

re

long
!Crystal report return value

ReportFile
STRING(256)

WindowTitle
STRING(256)

SelectionString
STRING(2000)

CrystalReport

CLASS(CrystalRpt)

End

Calling the Report

Reports are called from an open Window, usually by coding the calls from a Print button or some other defined action within your application.

To call a report you must carry out the following parts:

· Initialise the Report and Crystal if not already done

· Set any Selection formula

· Call the report

· Act on the result of the report

· Close the Report and optionally close the Print Engine

The following code will print a report with a Selection formula and returns a result allowing you to act on whether the report was printed or not.

On a button for calling the report put the following code:

UPDATE

re = CrystalReport.Init(ReportFile)

!Set the selection criteria for the report

re = CrystalReport.SelectionFormula(Selection String)

!For each formula that needs to be passed to the report, eg: for User defined values

re = CrystalReport.SetFormula(<Formula Name>, <Formula Value>)

re = CrystalReport.Preview(WindowTitle)

!The call to Preview will return an error message if one occurs.

If re = 0

Message(‘An error occurred running the report’)

end

When you have finished you can close Crystal down with the following, which should be placed in the ThisWindow.Kill embed to be called as the window is closed down.

CrystalReport.Kill()

But note that this also closes the Crystal Print engine!

Crystal Commands

The following section details each of the Class wrapper calls and gives brief notes on their usage.

Initialising Crystal Reports

Re = CrystalReport.OpenEngine()

You should open the Crystal Print engine either on the Window you want to run a report on, or preferably once at the start of your application. Using some file drivers, particularly Btrieve/Pervasive, Crystal is known to close the database Engine when the Crystal Reports engine is closed. By opening the engine once at the start of your application and then closing it when you exit the application you can avoid this problem.

The Init function calls OpenEngine() automatically and so this call will not be required unless you want greater control over how Crystal is being used.

Initialising a Print Job

PrintJob = CrystalReport.Init(<Report Name>)

This call initialises the report and also the report engine if it has not already been opened.

This must be called before the report can be used. The function returns a Print Job handle which might be used elsewhere, or simply as an error checking device.

If the value of PrintJob is zero on return, then an error has occurred attempting to start the Print Job.

Finding which Version of Crystal is installed

Many problems experienced with supporting Crystal reports is that the end-user has a different – usually older – version of Crystal reports installed. The call below allows you to check which Version is installed.

CrystalReport.GetEngineVersion(major, minor)

Where Major and Minor are defined as short. Use the values in Major and Minor to determine which version of Crystal Reports is installed.

Setting a selection formula for a Report

re = CrystalReport.SelectionFormula(<Selection String>)

This call sets the Selection for the Report to the Value of Selection String.

Running a report on its own is often not sufficient, you will also need to pass a Selection formula to the report. You will need to build up this selection formula using the correct Crystal Syntax which is of the form {FileName.FieldName} = <value>. You can see the types of syntax for a report by experimenting with the selection function directly within Crystal and then using the View Formula button to see what the formula itself looks like.

To create a formula in Clarion you will use a command such as that below:

SelectionString = ‘{{Project.Name} = ‘’Something here”’

Note that this uses a text value which has double quotes around it. Crystal will accept either double or single quotes around a text value, but it is easier in Clarion to use double quotes and not get confused over how many single quotes to use.

To select on a numeric field do not surround the value with quotes.

To use other types of formula refer to the Crystal documentation for examples. Dates, for example, can be difficult because Crystal expects them in a format such as:

Date(<year>, <month>, <day>)

You will have to use Clarion commands to pull these values out of a Standard Date and build the require formula for use by Crystal.

Setting a SQL Query for a Report

CrystalReport.Query(<SelectionQuery>)

Call this routine with a defined, valid SQL query to pass to Crystal. This call is only required where you have created a Crystal Report that uses SQL.

Setting User formulas in a Report

Re = CrystalReport.SetFormula(<Formula Name>, <Formula Value>)

This command is used when you have user-defined formulas within a report and want to change their value before running the report. An example of this might be where you have the amount of time spent on a job held in hours in your data file but want to display that in either hours or days depending on a setting in your program. Suppose your working day was 8 hours, but someone else’s working day was only 7 hours. You would need to change this divisor in Crystal when the report is run.

To do this set up a formula in Crystal and, for instance, call in HoursPerDay. This will be shown in Crystal as @HoursPerDay to indicate it is a formula.

Now you will pass this formula a value from within Clarion:

DailyHours = 8

ReportSetFormula(‘HoursPerDay’, DailyHours)

Where DailyHours is a variable.

This is actually a very powerful command and allows you to do things like writing a report that is grouped by a formula, and then pass the value to that formula at run time. You could report on a flat file with a single group defined within the report and set, but default to one of the values held in the file. An example might use a formula called @GroupBy which is initially set to Surname using a Personnel file. Within Clarion you might then write:

Case GroupBy

Of Surname; GroupValue = ‘Staff.Surname’

Of FirstName; GroupValue = ‘Staff.FirstName’

Of StaffID; GroupValue = ‘Staff.StaffID’

Of Department; GroupValue = ‘Staff.Department’

End

Re = CrystalReport.SetFormula(‘GroupBy’, GroupValue)

Passing a String Parameter to a Report

CrystalReport.PassStringParameter(<ParameterName>, <ParameterValue>)

Parameter fields are used in Crystal to define pre-defined selection values which are prompted for when the report is run. This call allows you to set the default values for these parameters.

Calling the Report

Although this is possibly the most complex command in Crystal, it is very easy to call within Clarion.

Re = CrystalReport.Preview(<WindowTitle>)

The value in re after this call will be zero if an error has occurred. If an error occurs you can use the GetJobStatus and error message facility to find what the error is.

If required, the following parameters, in the order shown below, can be passed to this function.

<STRING sWindowTitle> The title to show in the title bar of the Preview window

<STRING sInitState> The initial state the window will be displayed in. Standard constants available are

<STRING sFrame>

<STRING sIcon>

BYTE bSysMnu=FALSE Set to true to display the Windows System menu

BYTE bMaxBox=TRUE
Set to true to show a maximise icon on the Window

BYTE b3d=TRUE)
Set to true to make the Window 3 dimensional

Note: Preview method uses internal Crystal preview window on its own thread. It means that Preview method returns right after the preview window is opened. Use EmbeddedPreview method for more control. sIcon parameter is used for the compatibility with SV templates and is not working with the Preview method. Use EmbeddedPreview method to design your own previewer.

Printing a Report

CrystalReport._Print(<NumCopies>,<PrinterSetup>)

The _Print command can be called with the number of copies required and whether to display Printer Setup prior to printing. If omitted these default to 1 copy and no Setup.

Setting the Printer to send a Report to

CrystalReport.SetPrinter(<PrinterName>)

You can find the Printer name either by manually entering it into a string for subsequent use, or by getting the Printer name through Clarion.

Exporting a Report

CrystalReport.ExportTo(<FileFormat>, <FileName>, <StringDelimiter>, <FieldDelimiter>)

This exports the report to the specified File Format. Refer to the crwapp.app sample application for the usage.

Sending a Report through email

CrystalReport.ExportToMAPI(<FileFormat>, <ToList>, <ccList>, <Subject>, <MessageBody>, <StringDelimiter>, <FieldDelimiter>)

The most useful means of calling this is to send a report in Crystal format to a named recipient. For example, we have a report that has been run and is to be sent to JohnSmith@somewhere.com. The call would be:

SendTo = ‘JohnSmith@somewhere.com’

CrystalReport.ExportToMAPI(crUXFCrystalReportType, SendTo, ‘’, ‘Your Report’, ‘Attached is the report you asked for’)

Changing Paper Orientation

SetPaperOrientation PROCEDURE(BYTE Portrait=TRUE), SHORT, VIRTUAL, PROC

Changes paper orientation. Passing TRUE will set report orientation to “Portrait”, FALSE to “Landscape”.

Note: It seems not always possible to set Landscape orientation for the reports designed as Portrait.

Closing the Print Job

CrystalReport.ClosePrintJob

Closes the current print job down and frees it from memory.

Closing the Report Engine

CrystalReport.CloseEngine

Closes the Crystal Reports print engine. Use this when you close your program down, not the reporting screen.

Closing a Report Job and the Print Engine

CrystalReport.Kill

Close the Report print job and the Crystal reports engine

Examples of Using SetAllTablesLogOnInfo

For a direct print with a direct MS-SQL2000 connection:

 re = CrystalReport.Init(ReportFile)
 re = CrystalReport.SelectionFormula(SelectString)
 re =
CrystalReport.SetAllTablesLogOnInfo(GLO:DSN,GLO:DSNDB,GLO:DSNUser,GLO:DSNPas
sword,true)
 re = CrystalReport._Print(re,0)
 CrystalReport.CloseEngine()

For a direct print with an ODBC connection:

 re = CrystalReport.Init(ReportFile)
 re = CrystalReport.SelectionFormula(SelectString)
 re =
CrystalReport.SetAllTablesLogOnInfo(GLO:DSN,'',GLO:DSNUser,GLO:DSNPassword,t
rue)

 re = CrystalReport._Print(re,0)
 CrystalReport.CloseEngine()

For a preview with a direct MS-SQL2000 connection:

 re = CrystalReport.Init(ReportFile)
 re = CrystalReport.SelectionFormula(SelectString)
 re =
CrystalReport.SetAllTablesLogOnInfo(GLO:DSN,GLO:DSNDB,GLO:DSNUser,GLO:DSNPas
sword,true)
 re = CrystalReport.HasCloseButton(false)
 re = CrystalReport.EmbeddedPreview(window{prop:clienthandle})

For a preview with an ODBC connection:

 re = CrystalReport.Init(ReportFile)
 re = CrystalReport.SelectionFormula(SelectString)
 re =
CrystalReport.SetAllTablesLogOnInfo(GLO:DSN,'',GLO:DSNUser,GLO:DSNPassword,t
rue)
 re = CrystalReport.HasCloseButton(false)
 re = CrystalReport.EmbeddedPreview(window{prop:clienthandle})

Using the Crystal Wrapper for Clarion for Windows – page 7

